TRP Channels

TRP Channels

New Book on TRP Channels

Read it online. Get your copy from Amazon. Get your copy from Springer.

Transient Receptor Potential Channels offers a unique blend of thoughtfully selected topics ranging from the structural biology of this fascinating group of ion channels to their emerging roles in human diseases. This single book covers TRP channels of yeasts, flies, fishes frogs and humans. And from the biophysics of primary thermo-sensory events in cells to the thermosensation at whole organism level, from physiology of pain to the development of pain-killers, from psychiatric illnesses to cancers, from skin cells to sperms, from taste buds to testes, from established facts to heated debates, this book contains something for every TRP enthusiasts, beginner and expert alike. It includes crucial background information, critical analysis of cutting edge research, and ideas and thoughts for numerous testable hypotheses. It also shows directions for future research in this highly dynamic field. It is a book readers will be just as eager to give to others as keep for themselves. Transient Receptor Potential Channels (Advances in Experimental Medicine and Biology) [Hard cover]. Md. Shahidul Islam (Editor). Publisher: Springer. 52 chapters, 125 authors, about 1115 pages

Chapter 12

AbstractsPosted by Md. Shahidul Islam Wed, February 16, 2011 16:56:48

TRPML2 and the Evolution of Mucolipins

Emma N. Flores and Jaime García-Añoveros

Abstract TRPML2, the polypeptide product of the gene Trpml2 (aka Mcoln2), is a member of the TRPML or mucolipin branch of the TRP super family of ion channels. Although no known agonists have been discovered, the wild type channel gives basal currents when heterologously expressed in Drosophila (S2) cells and is constitutively active inmammalian cells when bearing a cell degeneration-causing, proline to alanine substitution in the fifth trans-membrane domain. TRPML2 forms channels that are inwardly rectifying and permeable to Ca+2, Na+, and Fe+2. Localization studies indicate TRPML2 is present in lysosomes, late endosomes, recycling endosomes and, at a lower level, the plasma membrane. Tissue and organ distribution of TRPML2 is solely reported through RT-PCR and it is uncertain which cell types express this channel. However, various studies suggest that lymphoid cells express TRPML2. Although the function of TRPML2 is not known, distribution and channel properties suggest it could play roles in calcium release from endolysosomes, perhaps to mediate calcium-dependent events such as vesicle fusion, or to release calcium from intracellular acidic stores. However, TRPML2 may also function in the plasma membrane and its abundance in vesicles of the endocytic pathaway might occur because its presence in the cell surface is regulated by endocytosis and exocytosis. An evolutionary analysis of Trpml2 and its relatives reveals that vertebrate and invertebrate chordates have only one Trpml gene, that Trpml1 and Trpml2 are common to vertebrates, and that Trpml3 is only found in tetrapods. Ray-finned fishes contain another isoform, which we term Trpml4 or Mcoln4 (and its product TRPML4). Trpml2 is next to Trpml3 in all tetrapod genomes except that of the frog Xenopus tropicalis and of the domesticated pig, which seems to lack most of the Trpml3 gene. This close linkage across species implies that it is maintained by selective pressure and suggests that the regulation of both genes is interdependent.

  • Comments(0)

Fill in only if you are not real





The following XHTML tags are allowed: <b>, <br/>, <em>, <i>, <strong>, <u>. CSS styles and Javascript are not permitted.