TRP Channels

TRP Channels

New Book on TRP Channels

Read it online. Get your copy from Amazon. Get your copy from Springer.

Transient Receptor Potential Channels offers a unique blend of thoughtfully selected topics ranging from the structural biology of this fascinating group of ion channels to their emerging roles in human diseases. This single book covers TRP channels of yeasts, flies, fishes frogs and humans. And from the biophysics of primary thermo-sensory events in cells to the thermosensation at whole organism level, from physiology of pain to the development of pain-killers, from psychiatric illnesses to cancers, from skin cells to sperms, from taste buds to testes, from established facts to heated debates, this book contains something for every TRP enthusiasts, beginner and expert alike. It includes crucial background information, critical analysis of cutting edge research, and ideas and thoughts for numerous testable hypotheses. It also shows directions for future research in this highly dynamic field. It is a book readers will be just as eager to give to others as keep for themselves. Transient Receptor Potential Channels (Advances in Experimental Medicine and Biology) [Hard cover]. Md. Shahidul Islam (Editor). Publisher: Springer. 52 chapters, 125 authors, about 1115 pages

Chapter 19

AbstractsPosted by Md. Shahidul Islam Mon, February 07, 2011 19:31:14

Investigations of the In Vivo Requirements of Transient Receptor Potential Ion Channels Using Frog and Zebrafish Model Systems

Robert A. Cornell

Transient Receptor Potential (TRP) channels are cation channels that serve as cellular sensors on the plasma membrane, and have other less-well defined roles in intracellular compartments. The first TRP channel was identified upon molecular characterization of a fly mutant with abnormal photoreceptor function. More than 20 TRP channels have since been identified in vertebrates and invertebrate model systems, and these are divided into subfamilies based on structural similarities. The biophysical properties of TRP channels have primarily been explored in tissue culture models. The in vivo requirements for TRPs have been studied in invertebrate models like worm and flies, and also in vertebrate models, primarily mice and rats. Frog and zebrafish model systems offer certain experimental advantages relative to mammalian systems, and here a selection of papers which capitalize on these advantages to explore vertebrate TRP channel biology are reviewed. For instance, frog oocytes are useful for biochemistry and for electrophysiology, and these features were exploited in the identifcation TRPC1 as a candidate vertebrate mechanoreceptor. Also, the spinal neurons from frog embryos can be readily grown in culture. This feature was used to establish a role for TRPC1 in axon pathfinding in these neurons, and to explore how TRPC1 activity is regulated in this context. Zebrafish embryos are transparent making them well suited for in vivo imaging studies. This quality was exploited in a study in which the trpc2 gene promoter was used to label and trace the axon pathway of a subset of olfactory sensory neurons. Another experimental advantage of zebrafish is the speed and low cost of manipulating gene expression in embryos. Using these methods, it has been shown that TRPN1 is necessary for mechanosensation in zebrafish hair cells. Frogs and fish genomes have been mined to make inferences regarding evolutionary diversification of the thermosensitive TRP channels. Finally, TRPM7 is required for early morphogenesis in mice but not in fish; the reason for this difference is unclear, but it has caused zebrafish to be favored for exploration of TRPM7’s role in later events in embryogenesis. The special experimental attributes of frogs and zebrafish suggest that these animals will continue to play an important role as models in future explorations of TRP channel biology.

  • Comments(0)//