TRP Channels

TRP Channels

New Book on TRP Channels

Read it online. Get your copy from Amazon. Get your copy from Springer.

Transient Receptor Potential Channels offers a unique blend of thoughtfully selected topics ranging from the structural biology of this fascinating group of ion channels to their emerging roles in human diseases. This single book covers TRP channels of yeasts, flies, fishes frogs and humans. And from the biophysics of primary thermo-sensory events in cells to the thermosensation at whole organism level, from physiology of pain to the development of pain-killers, from psychiatric illnesses to cancers, from skin cells to sperms, from taste buds to testes, from established facts to heated debates, this book contains something for every TRP enthusiasts, beginner and expert alike. It includes crucial background information, critical analysis of cutting edge research, and ideas and thoughts for numerous testable hypotheses. It also shows directions for future research in this highly dynamic field. It is a book readers will be just as eager to give to others as keep for themselves. Transient Receptor Potential Channels (Advances in Experimental Medicine and Biology) [Hard cover]. Md. Shahidul Islam (Editor). Publisher: Springer. 52 chapters, 125 authors, about 1115 pages

Chapter 30

AbstractsPosted by Md. Shahidul Islam Sun, February 06, 2011 20:28:33

Regulation of TRP Signalling by Ion Channel Translocation Between Cell Compartments

Alexander C. Cerny and Armin Huber

The TRP (transient receptor potential) family of ion channels is a heterogeneous family of calcium permeable cation channels that is subdivided into seven subfamilies: TRPC ("Canonical"), TRPV ("Vanilloid"), TRPM

("Melastatin"), TRPA ("Ankyrin"), TRPN ("NOMPC"), TRPP ("Polycystin"), and TRPML ("Mucolipin"). TRP-mediated ion currents across the cell membrane are determined by the single channel conductance, by the fraction of activated channels, and by the total amount of TRP channels present at the plasma membrane. In many cases, the amount of TRP channels at the plasma membrane is altered in response to physiological stimuli by translocation of channels to and from the plasma membrane. Regulated translocation has been described for channels of the TRPC, TRPV, TRPM, and TRPA family and is achieved by vesicular transport of these channels along cellular exocytosis and endocytosis pathways. This review summarizes the stimuli and signalling cascades involved in the translocation of TRP channels and highlights interactions of TRP channels with proteins of the endocytosis and exocytosis machineries.

  • Comments(0)//trpbook.islets.se/#post24