TRP Channels

TRP Channels

New Book on TRP Channels

Read it online. Get your copy from Amazon. Get your copy from Springer.

Transient Receptor Potential Channels offers a unique blend of thoughtfully selected topics ranging from the structural biology of this fascinating group of ion channels to their emerging roles in human diseases. This single book covers TRP channels of yeasts, flies, fishes frogs and humans. And from the biophysics of primary thermo-sensory events in cells to the thermosensation at whole organism level, from physiology of pain to the development of pain-killers, from psychiatric illnesses to cancers, from skin cells to sperms, from taste buds to testes, from established facts to heated debates, this book contains something for every TRP enthusiasts, beginner and expert alike. It includes crucial background information, critical analysis of cutting edge research, and ideas and thoughts for numerous testable hypotheses. It also shows directions for future research in this highly dynamic field. It is a book readers will be just as eager to give to others as keep for themselves. Transient Receptor Potential Channels (Advances in Experimental Medicine and Biology) [Hard cover]. Md. Shahidul Islam (Editor). Publisher: Springer. 52 chapters, 125 authors, about 1115 pages

Chapter 37

AbstractsPosted by Md. Shahidul Islam Mon, January 31, 2011 22:20:17

TRPM Channels in the Vasculature

Alexander Zholos, Christopher Johnson, Theodor Burdyga, and Donal Melanaphy

Recent studies show that mammalian melastatin TRPM nonselective cation channels (TRPM1-8), members of the largest and most diverse TRP subfamily, are widely expressed in the endothelium and vascular smooth muscles. When activated, these channels similarly to other TRPs permit the entry of sodium, calcium and magnesium, thus causing membrane depolarisation. Although membrane depolarisation reduces the driving force for calcium entry via TRPMs as well as other pathways for calcium entry, in smooth muscle myocytes expressing voltage-gated Ca2+ channels the predominant functional effect is an increase in intracellular Ca2+ concentration and myocyte contraction. This review focuses on several best documented aspects of vascular functions of TRPMs, including the role of TRPM2 in oxidant stress, regulation of endothelial permeability and cell death, the connection between TRPM4 and myogenic response, significance of TRPM7 for magnesium homeostasis, vessel injury and hypertension, and emerging evidence that the cold and menthol receptor TRPM8 is involved in the regulation of vascular tone.

  • Comments(0)//